If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45(33x^2+11)=768
We move all terms to the left:
45(33x^2+11)-(768)=0
We multiply parentheses
1485x^2+495-768=0
We add all the numbers together, and all the variables
1485x^2-273=0
a = 1485; b = 0; c = -273;
Δ = b2-4ac
Δ = 02-4·1485·(-273)
Δ = 1621620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1621620}=\sqrt{324*5005}=\sqrt{324}*\sqrt{5005}=18\sqrt{5005}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5005}}{2*1485}=\frac{0-18\sqrt{5005}}{2970} =-\frac{18\sqrt{5005}}{2970} =-\frac{\sqrt{5005}}{165} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5005}}{2*1485}=\frac{0+18\sqrt{5005}}{2970} =\frac{18\sqrt{5005}}{2970} =\frac{\sqrt{5005}}{165} $
| 63/x=45/4 | | r-19.3=-3.6 | | 10x+215=765 | | 16k-76=68 | | d^2-7d=6+0 | | -389=r-955 | | 63/x=4/3 | | –7x+10=–20 | | 15v+124=424 | | 7{x-4}=14 | | 8(u-2)=3u-27 | | 3.82(k+2)=11.46 | | 3m-57=42 | | 13x+80=15 | | 4-6x+2x=9 | | 21q=798 | | 5(2x)-9+3=-7 | | w+46=63 | | -8e+5=-3 | | 8a-(8a-8)=0 | | 14-3f=5 | | -5v+28=-2(v-8) | | 6x-40+x+20=180 | | -5k-46=-186 | | 4.5+.1x=7+.25x | | -4n-1=2n-26 | | 4m-(-4.42)=16.42 | | (7-x)(x=4)=0 | | 4(5x+3)-9x=11x+(-3) | | -5(v-9)=-8v+30 | | -4x+21=-47 | | 53-10x=11+11x |